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Summary

The evolution of the seed represents a remarkable life-history transition for photo-

synthetic organisms. Here, we review the recent literature and historical under-

standing of how and why seeds evolved. Answering the ‘how’ question involves a

detailed understanding of the developmental morphology and anatomy of seeds,

as well as the genetic programs that determine seed size. We complement this with

a special emphasis on the evolution of dormancy, the characteristic of seeds that

allows for long ‘distance’ time travel. Answering the ‘why’ question involves

proposed hypotheses of how natural selection has operated to favor the seed

life-history phenomenon. The recent flurry of research describing the comparative

biology of seeds is discussed. The review will be divided into sections dealing with:

(1) the development and anatomy of seeds; (2) the endosperm; (3) dormancy; (4)

early seed-like structures and the transition to seeds; and (5) the evolution of seed

size (mass). In many cases, a special distinction is made between angiosperm and

gymnosperm seeds. Finally, we make some recommendations for future research

in seed biology.
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Think of the fierce energy concentrated in an acorn! You
bury it in the ground, and it explodes into an oak! Bury
a sheep, and nothing happens but decay.

George Bernard Shaw

I. Introduction

The seed habit is the most complex and successful method
of sexual reproduction in vascular plants. The seed plants
(Spermatophyta) comprise two major groups: the Acrogym-
nospermae (also referred to as gymnosperms; c. 800 living
species) and the Angiospermae (also referred to as angio-
sperms; c. 250 000 living species) (Cantino et al., 2007).
These groups are by far the most diverse lineages within
the vascular plants. Charles Darwin described the rapid
rise and early diversification within the angiosperms during
the Cretaceous as ‘an abominable mystery’. Although many
seed plant groups are known from the fossil record, only
five lineages are extant (Fig. 1a): angiosperms and four
gymnosperm groups (conifers, cycads, ginkgos, Gnetales).
The classical ‘anthophyte hypothesis’ (based on the flower-
like reproductive structures of the different clades), that is,
that the angiosperms and the Gnetales are closely related
and form a clade, was rejected (reviewed by Doyle, 2006).
All molecular and morphological analyses support angio-
sperm monophyly (Frohlich & Chase, 2007; Soltis et al.,

2008; Pennisi, 2009). Molecular phylogenetic analyses of
seed plants now indicate that the living gymnosperm groups
are monophyletic, with Gnetales related to conifers (Doyle,
2006; Hajibabaei et al., 2006; Frohlich & Chase, 2007).
Frohlich & Chase (2007) state that paleobotanists are
increasingly willing to consider extant gymnosperm mono-
phyly, but with varying degrees of surprise and disquiet
over the implications. Based on these molecular analyses,
no other living gymnosperm group is directly related to
the angiosperms. Morphological analyses of extinct and
extant gymnosperms using critically revised data sets
suggest that this molecular arrangement should be
accepted (reviewed by Doyle, 2006). When living and
fossil taxa are considered together and constrained into
the molecular topology, the combined analysis reveals a
revised ‘anthophyte clade’ consisting of the extinct gymno-
sperm groups, glossopterids, Pentoxylon, Bennettitales,
and Caytonia as sister to angiosperms (Fig. 1a; Doyle,
2006; Frohlich & Chase, 2007; Soltis et al., 2008). The
monophyly of the extant gymnosperms places them all
equally distant from the angiosperms, which means that
the lineage that eventually produced angiosperms derived
from a common ancestor with extant gymnosperms much
earlier than previously thought, that is, from among the
paraphyletic seed ferns (Fig. 1a). In the present article we
use this as the phylogenetic framework to review what is
known about the evolution of the seed habit.

Fig. 1 Origin and evolution of the seed habit. (a) Seed plant phylogeny considering major extinct and extant gymnosperm and angiosperm
clades. Based on molecular phylogenetic evidence, the extant gymnosperms form a monophyletic group and the extant angiosperms form a
distinct monophyletic group. Note that the precise evolutionary connections between the different gymnosperm groups are unknown and that
the ancestors of the angiosperms are unknown. Extinct gymnosperm groups (insets of fossil drawings and images) include the paraphyletic
group of seed ferns (Lyginopteridopsida), such as Devonian–Carboniferous Lyginopterids (e.g. Lagenostoma, from Scott, 1909) and
Carboniferous–Permian Medullosans (e.g. Stephanospermum, see panel b). Other groups ⁄ insets: Bennettitales (cycadeoids, from Scott,
1909; Zimmermann, 1930), Glossopteridales (glossopterids), Gigantopteridales (gigantoperids, seed-bearing leaflet from Li & Yao, 1983),
Gnetopsida (gnetophytes: Ephedridae, Gnetidae, Welwitschiidae), monocots (maize grain), Caryophyllids (Beta; Hermann et al., 2007).
Timescale: geological eras, periods, time in million yr ago. (b–f) Structural biodiversity of gymnosperm and angiosperm seeds with special
consideration of the covering layers. (b) Stephanospermum akenioides – drawing of a fossil medullosan seed fern ovule (Permian–Carboniferous
Lyginopteridopsida; c. 1 cm long). Within the megagametophyte, archegonia with egg cells are evident. The megasporangium (nucellus)
is surrounded by the integument which evolved into the three-layered testa. The micropylar extension, which in other Stephanospermum

specimens forms an apical funnel to capture wind-blown pollen and a pollen chamber is evident. The nucellus and the megagametophyte are
poorly perserved in the Stephanospermum ovule fossils. The megaspore membrane is robust and consists of a distinctive network of granules
and rods of sporopollenin covered by a homogeneous outer layer (from Schnarf, 1937). (c) Mature seeds of extant gymnosperms (cycad and
conifers). The diploid embryo is enveloped by the haploid megagametophyte and the diploid testa; remnants of the nucellus may be present.
Left of panel – cycad seeds: in the cycad ovule the micropylar opening produces a liquid pollination drop, which catches wind-blown pollen
and allows it to enter the pollen chamber. The pollen germinate and the pollen tubes grow into the nucellus tissue. There they release
spermatozoids that swim to the archegonia and fertilize the egg cells. About half a year time difference is often found between cycad pollination
and fertilization. The Cycas (‘sago palm’) embryo grows within the seed, and germination can occur only as the embryo has reached a similar
size as the seed (morphological dormancy, MD). The embryo usually has two to four fleshy cotyledons, and the radicle is usually not fully
developed as a distinct organ at the time of seed maturity. Seeds of tropical and subtropical Zamia species require many months of warm
stratification before they will germinate (MPD). Right of panel – conifer seed: conifer ovules do not have pronounced pollen chambers and
pollen grains do not release swimming spermazoids, but immobile sperms. The mature pine (Pinus spp.) seed contains an uncurved embryo
with many cotyledons. The embryo is embedded in the megagametophyte tissue. The ovulate pine cone becomes woody as it matures.
Seeds of Pinus spp. are either nondormant or have physiological dormancy (from Engler, 1926; Schnarf, 1937). (d) Mature seed of a basal
angiosperm (Nymphaeaceae, water lily) with diploid endosperm and perisperm (from Kirchner et al., 1938). (e) Mature seed of a basal
eudicot (Ranunculaceae) with abundant triploid endosperm and tiny embryo (from Engler & Prantl, 1891). (f) Mature seeds of core eudicots
that differ in endosperm abundance: astrids (tobacco), rosids (Arabidopsis).
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Charles Darwin’s studies of seeds have contributed to his
ideas on evolution and distribution of plant species (Black,
2009). We consider the seed habit to be a preadaptation for
the quick dominance of the angiosperms. In addition, the
enhanced sporophyte, reduced gametophyte, and a wide
range of morphological adaptations (roots, leaves, the cuti-
cule and stomata, to name a few) allow seed plants to occur
in a wide variety of habitats and dominate the terrestrial
flora of earth. The seed habit itself, in addition to vegetative
traits such as the production of wood by a secondary meri-
stem (cambium), contributed decisively to the evolutionary
success of the gymnosperms and angiosperms.

In this review of the evolution of the seed habit, we will
start by describing seed development, including the evolu-
tion of the endosperm, and dormancy. There is a lot of
terminology involved. We present this in Section II ‘Seed
development’ and Table 1 to refresh the reader’s vocabulary

and to set the stage for a more complete understanding of
the seed system. With this terminology introduced, we will
turn our attention to the early evolution of seed-like struc-
tures and the transition to the seed habit. Finally, we will
consider the range of variation in seed size (mass) and its
ecological correlates by reviewing the recent flurry of
research in that area.

II. Seed development

In gymnosperms and angiosperms, seeds develop from
ovules (Finch-Savage & Leubner-Metzger, 2006; Frohlich
& Chase, 2007). Ovules consist of a stalk that bears
the nucellus (equivalent to the megasporangium; diploid
maternal tissue). The nucellus is enveloped by one
(gymnosperms) or two (angiosperms) covering layers
(diploid maternal tissue), called the integuments. An ovule

(a)

(b) (c)

(d) (e)

(f)
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is therefore, in a developmental sense, an unfertilized,
immature seed precursor (Gasser et al., 1998) and, in a
morphological and evolutionary sense, a megasporangium
surrounded by integument(s). These integument(s) develop
into the testa (seed coat), of which in mature seeds the outer
cell layer(s) of the outer integument usually form a dead
covering layer, while inner cell layer(s) may remain alive
(Bergfeld & Schopfer, 1986; Debeaujon et al., 2000;
Windsor et al., 2000; Haughna & Chaudhuryb, 2005).

Within the nucellus, a megaspore develops into a haploid
megagametophyte (female gametophyte). The mega-
gametophytes of gymnosperms and angiosperms (Fig. 2)
differ considerably (Floyd & Friedman, 2000; Baroux et al.,
2002). The mature gymnosperm megagametophyte is
multicellular, usually several archegonia develop within the
megagametophyte and one egg forms in each archegonium
(Fig. 2b, left image). In most angiosperm species, the mega-
gametophyte, in its mature state also called the embryo
sac, is seven-celled and eight-nucleate, referred to as the
Polygonum-type (Fig. 2b, right image) (Floyd & Friedman,
2000; Baroux et al., 2002; Friedman & Williams, 2004;
Berger et al., 2008; Friedman & Ryderson, 2009). Less
frequently the mature megagametophyte is four-celled and
four-nucleate, called the Nuphar ⁄ Schisandra-type, which
can be found in the basal angiosperms, namely Nymphaeales
and Austrobaileyales (Fig. 2b, middle). This is thought to be
the ancient type of embryo sac (Floyd & Friedman, 2000;
Baroux et al., 2002; Friedman & Williams, 2004; Berger
et al., 2008; Friedman & Ryderson, 2009).

After pollination, in all extant angiosperms and most
gymnosperms a pollen tube is formed, through which the
nonmotile sperm reaches and fertilizes the egg cell, which
leads to development of the diploid embryo (Fig. 2b). This
siphonogamic type of sperm transfer is typical for all extant
seed plants, with the exception of cycads and ginkgo, which
have multiflagellated, swimming sperm that are released
from the bursting pollen grain in the vicinity of the arche-

gonium. Fossil and living taxa suggest that siphonogamy
arose independently in conifers and on the line leading to
the angiosperms (Fig. 15 in Doyle, 2006).

A typical mature embryo is differentiated and exhibits
developmental polarity that is divided into the radicle
(embryonic root) and the shoot with the cotyledon(s)
(embryonic leaves) (Fig. 1c–f). The gymnosperms have
naked seeds; their seeds are not enclosed by an ovary and
are usually found naked on the scales of a cone. In a typical
mature gymnosperm seed, the embryo has two covering lay-
ers: the haploid maternal megagametophyte with stored
nutrients and the diploid integument tissue that develops
into the testa (Figs 1c, 2b).

In contrast to the gymnosperms, the angiosperm ovules
and seeds are covered; they are enclosed inside the ovary.
The ovary is the base of a modified leaf (carpel) or the
fusion between several carpels in a pistil. A mature ovary
contains one or more mature seeds and is called a fruit; a
pericarp (fruit coat) develops from the ovary wall and can
contain additional flower parts. Both seeds and fruits can be
the dispersal units of angiosperms.

A hallmark of angiosperm reproduction is double fertiliza-
tion; that is, in addition to the egg cell fertilization, a second
fertilization event occurs in which the central cell nucleus of
the megagametophyte is targeted by a second sperm cell
nucleus (Floyd & Friedman, 2000; Baroux et al., 2002;
Friedman & Williams, 2004; Berger et al., 2008; Friedman
et al., 2008; Friedman & Ryderson, 2009). This leads to
the formation of the endosperm (Fig. 2). Since the central
cell of most angiosperm species has either one (Nuphar ⁄
Schisandra-type) or two nuclei (Polygonum-type), the
resulting fertilized endosperm is either diploid or triploid.
The endosperm grows much more rapidly than the embryo,
initially through cell size enlargement coupled with endo-
polyploidy (nuclear divisions without cytokinesis), followed
by cellularization of each nucleus. The rate of seed growth
decreases in angiosperms at this stage (Sundaresan, 2005).

Table 1 Description of frequently used terms

Ovule Structure that consists of the integument(s) surrounding the nucellus (megasporangium); unfertilized, immature
seed precursor

Nucellus Megasporangium; surrounds the megagametophyte; can develop into perisperm after fertilization
Megagametophyte Female gametophyte, contains the female haploid egg cells (gametes) and several thousand (gymnosperms) or typically

three to eight (angiosperms) other cells; the mature angiosperm megagametophyte is called the embryo sac
Integuments One (gymnosperms) or two (angiosperms) outer layers of the ovule, having an apical opening (micropyle);

develop after fertilization into the seed coat (testa)
Micropyle Apical opening of the integuments; allows the pollen tube to enter the nucellus to release sperm for fertilization
Testa Seed coat, derived from the integuments of the ovule; dead maternal tissue
Endosperm Arises from the fusion of a second sperm nucleus with the central cell nucleus of the embryo sac during double

fertilization; nutritional tissue during seed development and in the mature seed of most angiosperms, in between
testa and embryo

Perisperm Derived from the nucellus after fertilization; maternal nutritional tissue in the mature seed of some angiosperms
Ovary Usually lower portion of the angiosperm pistil (carpel or fused carpels) containing ovules; fruits are mature ovaries;

ovary tissue develops into the pericarp
Pericarp Fruit coat of angiosperm fruits, develops from the mature ovary wall and other flower tissues; surrounds the seed(s)
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III. Evolution and functions of the endosperm
tissue

Two major hypotheses for the origin of the endosperm have
been proposed and are summarized by Friedman &
Williams (2004). The hypothesis by Sargant (1900) sug-
gests that in ancient seeds or seed-like structures the central
cell used to be an additional gamete besides the egg cell.
During fertilization, two embryos would have been pro-
duced in the ancestors of flowering plants, one of which
evolved into the sterile endosperm tissue with nourishing
function in the seeds of modern plants (Friedman, 1995).
This hypothesis is supported by the fact that, in Ephedra
and Gnetum (Gnetales, gymnosperms), several embryos
develop in the growing seed (Friedman, 1992). Many phylo-
genetically basal angiosperms develop diploid endosperm
(Fig. 2; Nuphar ⁄ Schisandra-type embryo sac), which fur-

ther supports Sargant’s (1900) theory. On the other hand,
Amborella trichopoda, the most basal angiosperm, has trip-
loid endosperm (Fig. 2a; Amborella-type embryo sac;
Friedman & Ryderson, 2009). The currently prevailing
phylogeny separates the Gnetales from the angiosperms,
that is, it does not support the classical ‘anthophyte hypo-
thesis’ that angiosperms and Gnetales share a direct common
ancestor (see Section I ‘Introduction’). Based on these obser-
vations, no unambiguous statement can be made.

The second hypothesis (Strasburger, 1900; Coulter,
1911) for the origin of the endosperm suggests that it repre-
sents a homolog of a portion of the gametophyte that later
became sexualized. The second fertilization event of the
central cell nucleus by an additional sperm nucleus cell
might have provided some unknown fitness advantages to
the growing embryo (Friedman & Williams, 2004). The
endosperm would then have originated from mutations of

(a)

(b)

Fig. 2 Gymnosperm and angiosperm
megagametophyte fertilization and the
evolutionary history of the angiosperm
embryo sac and endosperm. (a) Best
hypothesis (Friedman & Ryderson, 2009) for
the early evolution of the angiosperm
megagametophyte. (b) Megagametophyte
structure, fertilization and seed development
of gymnosperms and angiosperms. The first
angiosperms may have produced four-
nucleate, four-celled megagametophytes
(one developmental module). Double
fertilization of the uninucleate haploid central
cell in Nymphaeales and Austrobailyales
yields diploid endosperms
(Nuphar ⁄ Schisandra-type). In the common
ancestor of all angiosperms except
Amborella, Nymphaeales and
Austrobailyales, insertion of a nuclear
migration event at the two-nucleate syncytial
stage led to initiation of two developmental
modules and formation of a seven-celled,
eight-nucleate female gametophyte
(Polygonum-type). Modular duplication also
occurred independently in the lineage to the
Amborella-type embryo sac; in addition,
asynchronous cell division in the micropylar
module yields a third synergid in the
Amborella trichopoda endosperm (Friedman
& Ryderson, 2009). In addition to
endosperm, perisperm in basal angiosperm
seeds is known for Hydataceae,
Nymphaeaceae, Cabomaceae and
Trimeniaceae.
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the female gametophyte, which predestine these cells for a
supporting nonreproductive role. This would explain the
occurrence of certain types of apomixes (Carman, 1997).
According to Baroux et al. (2002), this theory is supported
by the fact that the addition of the paternal genome to the
maternal central cell might create hybrid vigor. Both of
these hypotheses have justifications, but a definite origin
of the endosperm tissue is still not clear (Berger, 2003;
Friedman & Ryderson, 2009).

After fertilization in what is the most common type of
endosperm development, the nuclear type, the initial endo-
sperm nucleus divides repeatedly without cell wall forma-
tion, resulting in a characteristic coenocyte-stage endosperm
(Baroux et al., 2002; Olsen, 2004; Friedman & Ryderson,
2009). In many species, including Arabidopsis thaliana and
cereals, this is subsequently followed by endosperm cellular-
ization. Different developmental fate of chalazal and micro-
pylar domains is a common pattern among the endosperms
of all basal angiosperm taxa and suggests that this may be a
feature of endosperm development in all angiosperms (Figs
13–16 in Floyd & Friedman, 2000). Interactions and endo-
sperm–embryo signaling is suggested from the fact that the
bipolar endosperm development pattern of most angio-
sperms is shared with the bipolar pattern of the embryos.
For example, in all Nymphaeales (Fig. 2a; Nymphaeaceae,
Cabomaceae, Hydatellaceae), the micropylar endosperm
undergoes division and becomes cellularized, whereas the
chalazal domain remains undivided and acts as a hausto-
rium, sometimes extending into the perisperm (Floyd &
Friedman, 2000; Rudall et al., 2008, 2009). Other examples
of bipolar endosperm development are the Brassicaceae
A. thaliana and Lepidium virginicum, in which a multinucle-
ated ‘chalazal’ region forms, and, at the same time, when the
rest of the endosperm including the micropylar domain
cellularizes, this chalazal region remains multinucleated
(Nguyen et al., 2000; Olsen, 2004). The radicle is embed-
ded within the micropylar endosperm domain, whereas the
tip of the cotyledons resides within the chazal endosperm
domain of these Brassicaceae. The evolution of endosperm
developmental patterns among basal flowering plants is
reviewed in detail by Floyd & Friedman (2000), and endo-
sperm development of other angiosperms is summarized by
Baroux et al. (2002). The genera Arabidopsis and Lepidium
emerged as highly suited for cross-species work on seeds
and fruits within the Brassicaceae family (Müller et al.,
2006; Linkies et al., 2009; Mummenhoff et al., 2009).

Regardless of its origin, contemporary endosperm tissue
serves not only as a nutrient source for the embryo during
seed development, but also as an integrator of seed growth
and development which includes reciprocal signaling
between seed compartments and parental effects caused by
imprinting (Berger et al., 2006; Berger & Chaudhury,
2009; Otho et al., 2009; Springer, 2009). The endosperm
is, depending on the species, partially or fully obliterated

upon seed maturity. However, most angiosperm species
have retained an endosperm layer in their mature seeds
(Fig. 19 in Floyd & Friedman, 2000; Fig. 3 in Forbis et al.,
2002; Fig. 4 in Finch-Savage & Leubner-Metzger, 2006).
In many cases, this endosperm in the mature seed is also
involved in the control of germination by being a barrier for
the growing radicle. During germination, the micropylar
endosperm weakens, allowing the radicle to protrude the
surrounding tissues. The hypothesis that weakening of the
seed covering layers is achieved by enzymatic action was
first proposed by Ikuma & Thimann (1963). Endosperm
weakening was originally demonstrated for seeds of asterid
species with either a thick endosperm layer (tomato,
tobacco, coffee) or a thin endosperm layer (e.g. lettuce; Ni
& Bradford, 1993; Bewley, 1997a,b; Toorop et al., 2000;
Leubner-Metzger, 2002; Petruzzelli et al., 2003; Nonogaki,
2006). More recent work demonstrated that endosperm
weakening also occurs in seeds of rosid species. The Brassic-
aceae Lepidium sativum and A. thaliana have a thin endo-
sperm layer and weakening of the micropylar endosperm
was biomechanically quantified during the germination of
L. sativum (Müller et al., 2006; Bethke et al., 2007; Linkies
et al., 2009). Comparison of the transcriptome of the
micropylar and nonmicropylar endosperm of L. sativum
supports the bipolar character of this seed tissue (Linkies
et al., 2009). It is the micropylar endosperm that can
function as a barrier to radicle expansion and thereby can
contribute to the regulation of germination timing. Finch-
Savage & Leubner-Metzger (2006) proposed that at least
some of the molecular mechanisms of endosperm weaken-
ing are widespread and are evolutionarily conserved traits.

IV. Evolution of dormancy

Seed dormancy is defined as an intrinsic block to the com-
pletion of germination of a viable seed under favorable con-
ditions for germination (e.g. temperature, humidity, light)
of the corresponding nondormant seed. Seed dormancy
controls germination timing in response to the seasons and
plays an important role in seed plant evolution and adapta-
tion to climatic changes (Forbis et al., 2002; Baskin &
Baskin, 2004; Evans & Dennehy, 2005; Leubner-Metzger,
2007). Germination timing may strongly influence the rate
at which species can expand their range, and may play an
important role in determining survival or extinction during
climate change (Donohue, 2005).

Baskin & Baskin (1998, 2004) have proposed a compre-
hensive ecophysiological classification system which
includes five classes for ‘whole seed’ dormancy: physiologi-
cal (PD), morphological (MD), morphophysiological
(MPD), physical (PY) and combinational (PY+PD). These
different classes and their distribution among angiosperms
are also summarized by Finch-Savage & Leubner-Metzger
(2006).
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Morphological dormancy is evident in seeds with
embryos that are differentiated but very small compared
with the size of the entire seed. The embryo to seed ratio
(E : S ratio) describes the relative size of the embryo within
the seed. A high E : S ratio (e.g. 0.9) means that the embryo
fills up most of the seed volume, whereas a low E : S ratio
(e.g. 0.1) means that the embryo is tiny and the nutrient
storage tissue (endosperm, perisperm, megagametophyte)
fills up most of the seed volume (Figs 3, 4 in Forbis et al.,
2002; Figs 3, 4 in Finch-Savage & Leubner-Metzger,
2006). Seeds with low E : S ratios often have long (a month
or more) germination times and the occurrence of abundant
megagametophyte (e.g. cycads, gymnosperms, Fig. 1c) or
perisperm plus endosperm (e.g. Nuphar, basal angiosperms,
Fig. 1d) tissue are typical for MD-class seeds. Forbis et al.
(2002) used ancestral state reconstruction methods of con-
tinuous characters using E : S family means for 179 families
calculated from a large dataset of 1222 extant angiosperm
species. Their analysis showed that the E : S ratios have
increased in derived angiosperms compared with ancestral
angiosperms. They proposed, based on these results, that a
tiny embryo embedded in abundant endosperm ⁄ perisperm,
and thereby classified as MD (and MPD), is the ancestral
dormancy type of angiosperms. This hypothesis is in
agreement with the results of Baskin & Baskin (2004). MD
simply delays germination timing by the time the embryo
needs to grow inside the seed before germination can take
place. The dispersal of seeds with a small embryo that needs
time to grow might have evolved as an ancient strategy to
distribute germination times, since successful germination is
highly dependent on environmental conditions.

Among basal angiosperms (Fig. 2a), seeds with abundant
perisperm that occupies a larger portion than the endo-
sperm storage tissue is characteristic for extant and extinct
Nymphaeales (Nympheaceae, Cabomaceae, Hydatellaceae)
(Floyd & Friedman, 2000; Friis et al., 2001; Yamada
et al., 2001; Chen et al., 2004; Baskin & Baskin, 2007;
Friedman 2008; Rudall et al., 2009) and Austrobaileyales
(Trimeniaceae) (Yamada & Marubashi, 2003; Yamada
et al., 2008). The presence of perisperm as the only nutritive
tissue in the seed is rare. It is usually present together with
endosperm in various proportions, locations and shapes.
Abundant perisperm is not restricted to basal angiosperms
and is also not necessarily associated with MD. Abundant
perisperm is typical for most Caryophyllales seeds, such as
sugarbeet (nondormant, Amaranthaceae; Hermann et al.,
2007) and cacti (PD, Cactaceae; Stuppy, 2002).

A trend to higher E : S ratios is also evident for gymno-
sperms (Forbis et al., 2002). For example, extant basal
gymnosperms, particularly cycads (Zamia, Cycas, Fig. 1c)
and ginkgos, have smaller embryos than some of the more
derived gymnosperm taxa, such as Callitropsis, Picea, Pinus
and Juniperus (Baskin & Baskin, 1998; Fig. 4 in Forbis
et al., 2002). Forbis et al. (2002) stated that available

gymnosperm embryo fossils are approximately in the
same shape and size ranges as extant gymnosperm embryos
of related groups (see references cited in Forbis et al.,
2002) and that there are no fossil gymnosperm seeds with
extremely small or extremely large E : S ratios. They there-
fore suggested that an unknown gymnosperm ancestor that
predates these fossil specimens likely had a small embryo
at dispersal. As several extant taxa have much larger
embryos, they interpreted this as support for the hypothesis
of increasing E : S ratios among gymnosperms.

Taken together, there seems to be a general trend of
increasing relative embryo size during evolution (higher
E : S ratio) for both angiosperms and gymnosperms (Forbis
et al., 2002; Baskin & Baskin, 2004). Based on this, Forbis
et al. (2002) proposed that morphological dormancy is the
ancestral dormancy type among gymnosperms and angio-
sperms. This is consistent with the conclusion reached by
Baskin & Baskin (1998, 2004). The evolution of larger
embryo size likely resulted in occurrence of nondormant
seeds; the embryo did not need to grow before germination.
It is thought that increased relative embryo size is one of the
main determinants (or requirements) for the evolution of
other classes of seed dormancy (Finch-Savage & Leubner-
Metzger, 2006).

The core eudicots tend to have less endosperm than more
basal extant angiosperm species. At the same time, physio-
logical dormancy developed, which is thought to be linked
to adaptation to seasonal weather changes as its release
requires that the seeds perceived a specific environmental
trigger(s). PD is the most abundant type of dormancy and
is found in seeds of all major gymnosperm and angiosperm
clades (Fig. 1 in Baskin & Baskin, 2004; Fig. 4 in Finch-
Savage & Leubner-Metzger, 2006). PD can be divided
into different types; the most common form in both angio-
sperm and gymnosperm is nondeep PD. Embryos excised
from seeds with nondeep PD will germinate normally and
treatment with gibberellins (GA) will break dormancy.
Also, depending on species, dormancy can be broken by
scarification (abrasion or cutting of the covering layers),
after-ripening (a period of air-dry storage), and cold or
warm stratification. It has been shown that nondeep PD
is determined by physiological factors in both the
embryo and ⁄ or the covering layers (‘coats’ in a loose sense)
(Bewley, 1997a,b; Koornneef et al., 2002; Kucera et al.,
2005; Nonogaki, 2006; Bentsink & Koornneef, 2008;
Holdsworth et al., 2008). Coat dormancy is mediated by
any of the covering layers (the endosperm and ⁄ or the testa).
Embryos excised from coat-dormant seeds develop and
grow readily. Abscisic acid (ABA) is an important positive
regulator of the coat-mediated nondeep PD in the seeds of
both gymnosperms and angiosperms (Kucera et al., 2005).
This suggests that gymnosperms and angiosperms share
common ABA-related molecular mechanisms regulating
dormancy and germination, and that ABA dependency is a
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plesiomorphic trait for angiosperms and gymnosperms.
The ABA-related transcription factor ABI3 ⁄ VP1 (ABA
INSENSITIVE3 ⁄ VIVIPAROUS1) is widespread among
green plants and is involved in regulating dormancy of
angiosperm and gymnosperm seeds and buds (Holdsworth
et al., 2008; Graeber et al., 2009). By contrast, DOG1
(DELAY OF GERMINATION 1), a major quantitative trait
gene more specifically involved in seed dormancy and ger-
mination timing, is so far only known within the Brassica-
ceae and its relation to ABA is the subject of ongoing
research (Bentsink et al., 2006; Graeber et al., 2009).

Physiologically dormant and nondormant seeds are dis-
tributed over the entire phylogenetic tree of gymnosperms,
basal angiosperms, and eudicots (Fig. 4 in Finch-Savage &
Leubner-Metzger, 2006). Therefore it has been proposed
that the gain and loss of PD quite likely occurred at several
times during evolution (Baskin & Baskin, 1998; Finch-
Savage & Leubner-Metzger, 2006). The evolution of PD
also led to the appearance of MPD in seeds with a small
embryo, which upon gain in embryo size and concurrent
loss of MD led to PD seeds (Fig. 5 in Finch-Savage &
Leubner-Metzger, 2006). The most phylogenetically
restricted dormancy classes are PY and a combination of
both PY and PD (Baskin & Baskin, 1998, 2004; Finch-
Savage & Leubner-Metzger, 2006). PY is characterized by a
water impermeability of the seed or fruit coat. It is believed
to be an adaptation of the plant to specialized life habitats
(Baskin & Baskin, 2004). PY is not found in gymnosperms,
but only in angiosperm seeds, which indicates that it is a
more derived form of dormancy.

V. Early seed-like structures and the transition to
seeds

The origin and evolution of the seed habit is a fascinating
story that started in late Devonian c. 370 million yr ago
(Ma). Three major evolutionary trends were important for
the transition from the progymnosperms to the seed plants
(Niklas, 1997; Doyle, 2006; Taylor & Taylor, 2009): the
evolution from homospory to heterospory, meaning the
production of specialized haploid female-like megaspores
and male-like microspores; the evolution of the integu-
ments; and the evolution of pollen-receiving structures.
This includes the transition to water-independence of the
pollination process.

The earliest seed plants emerged in the late Devonian from
a paraphyletic group termed progymnosperms (Fig. 1a).
Progymnosperm fossils show vegetative structures typical
for seed plants combined with pteridophytic reproduction.
Seed-like structures relating to the progymnosperm ⁄ seed–
plant transition are often not preserved in fossil specimens
and ⁄ or cannot be assigned unambiguously to the fossil
specimen. Archaeopteris, an extinct progymnosperm, was
the first known modern tree (Judd et al., 2002; Crane et al.,

2004). Although it produced spores rather than seeds
(Niklas, 1997; Judd et al., 2002), it exhibited an advanced
system of spore production called heterospory. Hetero-
spory, which has probably evolved independently in several
lineages, is widely believed to be a precursor to seed repro-
duction.

Fossils of paraphyletic seed ferns (Lyginopteridopsida,
Fig. 1a) exhibit a variety of seed-like structures (Hemsley,
1993; Taylor & Taylor, 1993, 2009; Doyle, 2006). The
oldest fossil pre-ovules are from the Middle Devonian
(385 Ma, e.g. Runcaria; Gerrienne et al., 2004). Elksinia
polymorpha, the oldest known fossil seed plant, is a seed fern
from the Late Devonian (Taylor & Taylor, 1993; Niklas,
1997; DiMichele et al., 2006). This suggests that seed
plants arose between 385 and 365 Ma, in the time interval
separating Runcaria and the earliest known seed plants.
The seed ferns Elksinia, as well as Archaeosperma and
Lagenostoma, produced pre-ovules or ovules on sterile
structures called cupules (Fig. 1a, inset). Cupules are cup-
like structures that partially enclose the ovule. In these early
ovules, the nucellus was surrounded by integumentary
tissue consisting of free lobes (Fig. 1a, inset). These lobes
curved inwards at their tips, forming a ring around the
apical end. So far, embryos have not been found in
Devonian seed fern fossils.

The medullosan seed ferns are thought to be a mono-
phyletic group of seed plants (Judd et al., 2002; Crane
et al., 2004; DiMichele et al., 2006) and were abundant
trees in Carboniferous floodplains (> 290 Ma) and
extended well into the Permian (> 250 Ma; Fig. 1a). This
group includes Stephanospermum (Fig. 1b), Trigonocarpus,
Pachytesta, Rhynchosperma, Medullosa, and Polypterospermum
(Combourieu & Galtier, 1985; Drinnan et al., 1990; Taylor
& Taylor, 1993; Dunn et al., 2002). Fossil seeds from
medullosan seed ferns are several mm to cm long. In some
cases, even embryo structures have been preserved. In these
seed ferns, the cupule was replaced by a three-layered testa
(Fig. 1b). There are indications that multiple origins of
cupules existed and that structures called cupules are not all
homologous among Paleozoic and Mesozoic seed ferns or
gymnosperms (Hemsley, 1993; Doyle, 2006; Taylor &
Taylor, 2009). The ovules usually have a round shape, with
one end of the integument drawn out into a micropyle that
probably helped guide pollen to the megagametophyte
(Fig. 1b).

Schmeissneria has been proposed by Wang et al. (2007) as
an Early Jurassic (> 160 Ma) missing link to angiosperms
because it has angiospermous traits like closed carpels. This
proposal is not widely accepted, however, and Schmeissneria
is proposed by others to be a member of the Ginkgoales
(Kirchner & Van Konijnenburg-Van Cittert, 1994; Zhou,
2009). Phase-contrast X-ray microtomography links char-
coalified fossil seeds from the Early Cretaceous (144 to
100 Ma) with the gymnosperm Gnetales and Bennettitales
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(Friis et al., 2007, 2009). These fossil seeds are
c. 0.5–1.8 mm long and have two distinctly different layers
surrounding the nucellus: an inner, thin, membranous
integument, formed by thin-walled cells; and a robust,
outer, sclerenchymatous seed envelope that completely
encloses the integument except for the micropylar opening.
This outer seed envelope with distinctive anatomical struc-
ture surrounds the nucellus and the integument. The integ-
ument is extended apically into a long, narrow micropylar
tube. Only Gnetales (extant and extinct), Erdmanithecales
(extinct) and Bennettitales (extinct) are known to have seeds
with an additional seed envelope and the integument
extended into a long, narrow micropylar tube. The interpre-
tation of the outer covering layer of Bennettitales seeds as
an extra-integumentary outer envelope, as it is known from
Gnetales seeds, is a matter of considerable debate (Friis
et al., 2007, 2009; Rothwell et al., 2009).

Archaefructus, originally thought to be a stem-group
angiosperm of Jurassic age, is not; the fossil specimens have
been redated as belonging to the Early Cretaceous
(c. 125 Ma) flora of China (Sun et al., 2002; Friis et al.,
2003; Frohlich & Chase, 2007). It seems to have been an
aquatic plant and had fruits (c. 10 mm long and 2 mm
wide) that contained two to 12 small seeds. It is possible
that Archaefructus is on the stem lineage to angiosperms, but
evidence for this is ambiguous (Friis et al., 2003; Pennisi,
2009). Amborella trichopoda, an obscure shrub found only
in New Caledonia, emerged as a crucial window to the past
(Friedman & Ryderson, 2009; Pennisi, 2009; Williams,
2009). Amborella sits at the base of the angiosperm family
tree, the sister group of all other extant angiosperms (Fig.
2a). The nuclear genome sequence of A. trichopoda will be
an exceptional resource for comparative plant genomics
(Soltis et al., 2008) and, based on its triploid endosperm
(Fig. 2a), for re-examination of the evolutionary develop-
mental history of the embryo sac (Williams, 2009).

VI. Seed size evolution

Seed size (mass) is central to many aspects of plant ecology
and evolution (Harper et al., 1970; Westoby et al., 1996;
Leishman et al., 2000; Moles et al., 2005a,b). During a
period of rapid angiosperm diversification (85–65 Ma),
angiosperms moved out of the tropics and shifted from
being predominantly small-seeded to having a much wider
range of seed sizes (Eriksson et al., 2000; Moles et al.,
2005a,b). Extant angiosperms have seed masses spanning
>11 orders of magnitude, from the lint-like seeds of orchids
up to the 20 kg seeds of the double coconut (Harper et al.,
1970; Moles et al., 2005a,b). Gymnosperms have somewhat
less variation in mass, but have larger seeds than the average
angiosperm (Fig. 3). Interestingly, individual orders and
families vary by up to eight orders of magnitude (Fig. 3).
Moles et al. (2005a,b) found that plant size is the strongest

correlate with seed mass across a diverse assemblage of plant
species (stronger than mode of dispersal or environmental
conditions). Several authors have suggested that species with
large seeds have an advantage under low light conditions,
when their greater protein and lipid reserves, or their more
advanced development, can facilitate growth (Salisbury,
1942; Mazer, 1989; Rees & Westoby, 1997; Geritz et al.,
1999; Eriksson et al., 2000; Leishman et al., 2000; Moles
et al., 2005a,b; Bruun & Ten Brink, 2008). However, large
seeds usually come at the cost of seed number per flower or
fruit (Leishman, 2001). In addition, large seeds cannot be
physically borne on small plants because of the weight of
the seed, which may partly explain the association between
plant size and seed size (Grubb et al., 2005).

Another hypothesis to explain the plant size ⁄ seed size cor-
relation is that there are common genetic components that
determine seed size, plant size, and the size of other plant
organs. There have been several recent reviews concerning
the genetic determinants of organ size (Sundaresan, 2005;
Anastasiou & Lenhard, 2007; Bogre et al., 2008; Busov
et al., 2008; Krizek, 2009). More cells or larger cells could
both lead to larger organs, but in general it appears to be a
combination of both (we will review several examples in the
following paragraphs). Cell cycle times, and the
length ⁄ duration of developmental periods, are therefore
important factors determining final organ size. In angio-
sperm seeds, the size of each of the three major compart-
ments (embryo, endosperm ⁄ perisperm, and seed coat)
could increase individually. However, the growth of these
organs is generally coordinated (Sundaresan, 2005; Otho
et al., 2009), so selection for increased embryo size, may
lead to a larger endosperm as well, and perhaps have conse-
quences in other organs.

As with most developmental processes, the action of tran-
scription factors has been shown to play a key role in deter-
mining seed size. For example, in A. thaliana, large seeds
can be generated by mutations in the APETALA2 (AP2)
transcription factor (Jofuku et al., 2005; Ohto et al., 2005).
Similarly, ectopic expression of the AINTEGUMENTA
(ANT) transcription factor can also lead to larger seeds
(Krizek, 1999; Mizukami & Fischer, 2000). Luo et al.
(2005) found that mutations in either HAIKU2 (IKU2) or
MINISEED3 (MINI3) led to reduced seed size, and that
the mutant seed phenotypes depended on the parent-of-
origin genotype of the endosperm and embryo. MINI3 is a
WRKY family transcription factor, and IKU is a leucine-rich
repeat (LRR) receptor kinase. IKU2 is expressed only in
the endosperm, while MINI3 is expressed in both the
endosperm and the embryo. IKU2 expression was down-
regulated in mini3 mutants, indicating that MINI3 acts
upstream of IKU2. The reduced seed size of iku mutants
showed reduced endosperm growth, premature cellulariza-
tion of the endosperm, and a reduced proliferation of the
embryo after the early torpedo stage (Garcia et al., 2003).
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Zhou et al. (2009) recently discovered that SHORT
HYPOCOTYL UNDER BLUE (SHB1) regulates seed
development through changes in cell size and number. Kang
& Ni (2006) found a mutant, shb1-D, that was a dominant
gain-of-function allele that led to overexpression of SHB1.
When Zhou et al. (2009) studied phenotypic effects in the
seed, they found that shb1-D exhibited increased seed mass
largely as a result of coordinated endosperm cellularization
and enlargement and continued embryo development. The
shb1-D mutants had more cells, larger cells, accumulated
more proteins and fatty acids, and had delayed embryo
development (which was compensated for later in embryo-
genesis). By utilizing chromatin immunoprecipitation

(ChIP), Zhou et al. (2009) were able to show that SHB1
associates with MINI3 and IKU2 promoters, which indi-
cates that these genes may all act in a coordinated fashion to
affect final seed mass through the proliferation or delay of
endosperm and embryo development.

Xiao et al. (2006) discovered changes in Arabidopsis seed
mass that were associated with mutations in METHYL-
TRANSFERASE 1 (MET1) and DECREASE IN DNA
METHYLATION1 (DDM1). Pistils of met1-6 or ddm1-2
mutants pollinated with wild-type pollen produced F1

plants with hypomethylated maternal genomes. Seeds from
these F1 plants showed delayed endosperm development,
and larger endosperm volume compared with the wild-type

Fig. 3 Comparison of variation in seed mass of different plant species. Shown is a phylogeny of seed plants to the order level, and the corre-
sponding seed masses are figured as whisker-box-plots. The gray boxes include 50% of all data points for a certain order, with the vertical line
showing the median and the error bars indicating the range of seed masses. Numbers in round brackets indicate the number of species in the
corresponding order for which seed mass data were available. Arrows in the phylogenetic tree indicate major divergence points in genome size
(G) and seed mass (S). Shown are the 20 largest contributions to present-day variation in 2C DNA content, ranked from 1 to 20 (superscript
numbers following G) by their contribution score for genome size (Beaulieu et al., 2007). Major significant divergences for seed mass are
shown (Moles et al., 2005a; Beaulieu et al., 2007). Note that often genome size and seed mass divergence points belong to the same node.
Genome size and seed mass divergences that are within an order are shown in brackets directly behind the order’s name. All seed mass data
are from Liu et al. (2008). The phylogenetic tree was constructed using Phylomatic (http://www.phylodiversity.net/phylomatic).
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plants. A reciprocal cross (paternal ddm1-2 or met1-6 with a
wild-type mother) produced F1 seeds with a hypomethyl-
ated paternal genome, which resulted in early embryo cellu-
larization, and consequently a smaller endosperm volume.
These experiments show that parent-of-origin genotype,
and methylation affect the final size of seeds, and that
changes in endosperm volume can affect final seed size, even
though the endosperm is largely consumed by the embryo
during Arabidopsis seed maturation.

Unlike the previous studies, which largely identified
Arabidopsis mutants, resulting in either delayed or contin-
ued endosperm or embryo development, Schruff et al.
(2006) found a mutation that resulted in dramatically
enlarged seeds caused by extra cell divisions in the integu-
ments, which resulted in an enlarged seed coat. The
mutation was a loss-of-function in AUXIN RESPONSE
FACTOR 2 (ARF2), which is a member of a family of tran-
scription factors that bind to auxin-responsive elements.
The wild-type ARF2 generally functions to repress cell
division, but a mutant of ARF2, megaintegumenta (mnt),
continues cell division in the integument, leading to an
enlarged embryo sac. Similarly, Adamski et al. (2009) found
that KLUH (KLU) regulates seed size in the same manner;
it stimulates cell proliferation in the integument, thus
determining the growth potential of the seed coat and
seed. In both cases (ARF2 and KLU), the effects were depen-
dent on the parent-of-origin genotypes of the endosperm
and embryos. Similarly, a mutant of APETALA2 (AP2)
produced larger seeds, with larger integument cells (Otho
et al., 2009). This was accompanied by an extended
period of rapid endosperm growth. Conversely, instead of
integument cell elongation, Garcia et al. (2003, 2005)
found an Arabidopsis mutant of TRANSPARENT TESTA
GLABROUS (TTG2), which resulted in a reduction of
integument cell elongation, and smaller seeds. Perhaps the
size of the embryo sac partly determines the final size of
the seed. Supporting this conclusion is the work of Fukuta
et al. (2005), who showed that physical restriction in small
pods led to seed size reduction in a brassinosteriod-deficient
Vicia faba.

Outcomes of these studies seem to agree with a general
theory of organ growth that consists of two phases
(Anastasiou & Lenhard, 2007; Bogre et al., 2008). In the
first phase, cell proliferation is coupled with cell growth,
leading to an increase in cell number within the developing
organ. In the second phase, cell division ceases and further
growth of the organ results from cell expansion. We have
reviewed several mutations (met1-6, ddm1-2, iku2, mini3,
and arf2 ) that have led to continued cell proliferation. And
we have also reviewed mutations that cause changes in cell
expansion or final cell size (ap2 and ttg2). But final organ
size is determined at an integrated organismal level. For
example, if cell division is disrupted as a result of mutation,
the reduction in cell numbers may be accompanied by

increased cell size, a phenomenon termed ‘compensation’
(Garcia et al., 2005; Horiguchi et al., 2006). Also, putative
mobile growth regulators, such as generated by Arabidopsis
KLUH (KLU), act at the periphery of organs (such as leaves
and flowers) and can either increase or decrease cell proli-
feration in the organ meristem. Anastasiou et al. (2007)
suggested that such expression at the margin could provide
a readout for the perimeter to area ratio of an organ. Other
classes of growth regulators, such as the Arabidopsis TOR
gene (atTOR; Menand et al., 2002) and the ubiquitin-
mediated growth factor BIG BROTHER (BB; Disch et al.,
2006), operate in a similar manner to control cell prolifera-
tion in a dosage-dependent manner.

Interestingly, the major changes in seed size have been
associated with changes in genome size (Beaulieu et al.,
2007). Genome size varies over four orders of magnitude in
plants (Bennett & Leitch, 2005). The amplification of
transposable elements and polyploidy are both thought to
be common mechanisms for increasing nuclear DNA
amount across species (Bennetzen, 2002; Kidwell, 2002;
Bennetzen et al., 2005; Soltis et al., 2009). Polyploidy
has been a particularly pervasive factor in angiosperm
evolution (Soltis et al., 2009). Beaulieu et al. (2007) found
that divergences in seed mass have been more closely
correlated with divergences in genome size than with
divergences in other morphological and ecological variables
(Fig. 3). Plant growth form is the only variable examined
thus far that explains a greater proportion of variation
in seed mass than does genome size. Yet the functional
consequences of genome size evolution remains a signifi-
cant, unanswered question (Knight et al., 2005; Knight &
Beaulieu, 2008).

Why do species with larger genomes have larger seeds?
There is a general trend for species with larger genome sizes
to have larger cells and slower cell division rates (Francis
et al., 2008; Knight & Beaulieu, 2008; Gruner et al., in
press). Beaulieu et al. (2008) demonstrated a broad scale
correlation between genome size and guard cell size across a
wide range of angiosperms. In seeds, comparable cells in
diploid and tetraploid species should have dramatically
different cell sizes (interestingly, detailed comparisons of
seed anatomy in ploidy series have not been made, to our
knowledge). We propose that genome size increases may
lead to a disruption of signal transduction networks. We
have reviewed several transcription factors that have signifi-
cant effect on seed size when mutated (AP2, ANT, MINI3,
ARF2, KLU, TOR and BB). The end result of genome
size change for seed development may be similar to when
these transcription factors have undergone loss-of-function
mutations, which can lead to changes in cell proliferation or
timing of developmental periods (reviewed earlier in the
paper). In our view, increased genome size may disrupt
transcription factor binding, perhaps making it slower
(from the sheer volume of DNA that must be ‘read’, or
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because of a greater frequency of mismatches). Changes in
genome size may be analogous to changes in methylation
observed in the DDM1, MET1 mutants. Changes in
nuclear DNA content brought about by polyploidy lead to
variation in gene dosage and a doubling of orthologous
genes in the genome. Interestingly, orthologous genes have
been observed to be down-regulated by methylation in
polyploids (Lee & Chen, 2001; Wang et al., 2004, 2006).

The studies reviewed here were largely done using
Arabidopsis. These studies should become the basis of a
larger cross-species comparison to see if the genetic factors
that have been identified in mutant studies of Arabidopsis
are the same ones that have led to the profound variation
in seed mass across the angiosperms. Whether these
mechanisms are conserved in gymnosperms should also be
tested.

VII. Conclusion

The evolution of the seed represents a remarkable transition
for photosynthetic organisms. Here, we have reviewed the
development and dormancy of seeds, the rise and fall of the
endosperm, and the genetic mechanisms and developmental
anatomy of large and small seeds. We would like to end by
presenting a series of unanswered questions that are ripe for
further research in the field of seed biology. Whether gen-
ome size increases lead to a disruption of signal transduction
networks, causing continued cell proliferation and therefore
seed enlargement, is first on our list. We would also like to
know the biomechanical forces required to achieve embryo
growth, endosperm weakening, testa (seed coat) rupture,
and the genes that are either up-regulated or down-regulated
during these transitions. How does variation in cell size (and
genome size) affect germination, growth, and seed develop-
ment? Why do some species have deep dormancy and others
have nondeep dormancy, and what genes are responsible for
these differences? Are the mechanisms that have led to the
profound variation in seed mass across the angiosperms the
same as the factors that have been identified in mutant stud-
ies of Arabidopsis? There is still much to be learned from the
comparative anatomy and development of seeds. We suspect
that when looking at seeds of two species that vary consider-
ably in size, the species with larger seeds will have more fully
developed embryos with a greater number of cells per
embryo; larger cells in general; and will take longer to
develop to compensate for a slower cell division rate. Indeed,
Leishman et al. (2000) found a close relationship between
whole-plant relative growth rates (RGRs) and seed mass,
but whether whole-plant RGR is correlated with embryonic
developmental rates in seeds is unknown. Many of the ques-
tions presented here are ideal for applying an integrative,
phylogenic-based, cross-species, systems biology approach.
And we predict great advances for our understanding of seed
biology and evolution in the coming decade.
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